Hom-Gerstenhaber algebras and Hom-Lie algebroids Postdoc Symposium-2019

> Satyendra Kumar Mishra Statistics & Mathematics Unit, ISI Bangalore.

> > August 22, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 In recent years, there is a growing interest in new nonassociative algebra structures, known as hom-algebraic structures due to their close relationship with deformed vector fields and differential calculus.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- In recent years, there is a growing interest in new nonassociative algebra structures, known as hom-algebraic structures due to their close relationship with deformed vector fields and differential calculus.
- The first appearance of such an algebra was the notion of hom-Lie algebra in the context of *q*-deformations of Witt and Virasoro algebras.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- In recent years, there is a growing interest in new nonassociative algebra structures, known as hom-algebraic structures due to their close relationship with deformed vector fields and differential calculus.
- The first appearance of such an algebra was the notion of hom-Lie algebra in the context of *q*-deformations of Witt and Virasoro algebras.
- In this talk, we are interested in a geometric generalisation of hom-Lie algebras, the notion of hom-Lie algebroid.

- In recent years, there is a growing interest in new nonassociative algebra structures, known as hom-algebraic structures due to their close relationship with deformed vector fields and differential calculus.
- The first appearance of such an algebra was the notion of hom-Lie algebra in the context of *q*-deformations of Witt and Virasoro algebras.
- In this talk, we are interested in a geometric generalisation of hom-Lie algebras, the notion of hom-Lie algebroid.
- Hom-Lie algebroids were defined through a formulation of hom-Gerstenhaber algebras.

This talk is divided into three parts:

- Gerstenhaber algebras & Lie algebroids;
- Hom-Lie algebra structures;
- Relationship between hom-Gerstenhaber algebras & hom-Lie algebroids.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

I. Gerstenhaber Algebras & Lie Algebroids

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition: [M. Gerstenhaber, 1964]

A Gerstenhaber algebra is a triplet $(\mathcal{A} = \bigoplus_{i \in \mathbb{Z}} \mathcal{A}_i, \wedge, [-, -])$, where \mathcal{A} is a graded commutative associative \mathbb{K} -algebra and $[-, -] : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ is a bilinear map of degree -1 such that

 (*A*[1], [-, -]) is a graded Lie algebra. (Here *A*[1]_i = *A*_{i+1} for all i ∈ Z).

• The following Leibniz rule holds:

$$[X, Y \wedge Z] = [X, Y] \wedge Z + (-1)^{(i-1)j}Y \wedge [X, Z],$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

for all $X \in A_i$, $Y \in A_j$, $Z \in A_k$.

Gerstenhaber algebras

A Gerstenhaber algebra (A, ∧, [-, -]) is said to be an exact Gerstenhaber algebra if there exists a square zero operator D : A → A of degree -1 such that [X, Y] = (-1)^{|X|}(D(X ∧ Y) - D(X) ∧ Y - (-1)^{|X|}X ∧ D(Y)) for any homogeneous elements X, Y ∈ A.

Gerstenhaber algebras

- A Gerstenhaber algebra (A, ∧, [-, -]) is said to be an exact Gerstenhaber algebra if there exists a square zero operator D : A → A of degree -1 such that [X, Y] = (-1)^{|X|}(D(X ∧ Y) D(X) ∧ Y (-1)^{|X|}X ∧ D(Y)) for any homogeneous elements X, Y ∈ A.
- A differential Gerstenhaber algebra is a Gerstenhaber algebra (A, ∧, [-, -]) equipped with a square zero map d : A → A such that d is a derivation of degree 1 with respect to the product ∧. Moreover, if d is a derivation of the graded Lie bracket then the Gerstenhaber algebra is said to be "strong differential Gerstenhaber algebra".

Definition: [Mackenzie, 2005]

A Lie algebroid over a smooth manifold M is a vector bundle A over M equipped with a bundle map $\rho : A \to TM$, called the anchor map, and a bilinear map $[-, -] : \Gamma A \otimes \Gamma A \to \Gamma A$ such that

•
$$(\Gamma A, [-, -])$$
 is a Lie algebra;

• $[X, f.Y] = f.[X, Y] + \rho(X)(f).Y$ for all $X, Y \in \Gamma A$ and $f \in C^{\infty}(M)$.

If A is a rank n vector bundle over a smooth manifold M and $\bigoplus_{0 \le k \le n} \Gamma(\wedge^k A)$ is the exterior algebra of multisections of the bundle A. Then,

Geometric structures on rank <i>n</i>	Gerstenhaber algebra structures
vector bundle A	on the space $\oplus_{k\geq 0} \Gamma(\wedge^k A)$
Lie algebroids	Gerstenhaber algebras
Lie algebroids with a flat	Exact Gerstenhaber algebras
connection on the line bundle $\wedge^n A$	(BV algebras)
Lie bialgebroids	Strong differential Gerstenhaber
	algebras

II. Hom-Lie algebra structures

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Hom-Lie algebras

Definition: [J. Hartwig, D. Larsson, and S. Silvestrov, 2006] A hom-Lie algebra is a triplet $(\mathfrak{g}, [-, -], \alpha)$ where \mathfrak{g} is a \mathbb{K} -vector space equipped with

• a skew-symmetric \mathbb{K} -bilinear map $[-,-]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$ and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• a linear map $\alpha : \mathfrak{g} \to \mathfrak{g}$

such that

- $\alpha[x, y] = [\alpha(x), \alpha(y)]$ and
- $[\alpha(x), [y, z]] + [\alpha(y), [z, x]] + [\alpha(z), [x, y]] = 0$

for all $x, y, z \in \mathfrak{g}$.

Example

Let $(\mathfrak{g}, [-, -])$ be a Lie algebra, and $\alpha : \mathfrak{g} \to \mathfrak{g}$ be a Lie algebra homomorphism, then the triplet $(\mathfrak{g}, [-, -]_{\alpha}, \alpha)$ is a hom-Lie algebra, where

$$[x,y]_{\alpha} := [\alpha(x),\alpha(y)]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for any $x, y \in \mathfrak{g}$.

q-Deformations: Pioneering works

- N. Aizawa and H. Sato: q-deformation of the Virasoro algebra with central extension, Phys. Lett. B 256(1), 1991.
- M. Chaichian, P. Kulish, and J. Lukierski: q-deformed Jacobi identity, q-oscillators and q-deformed infinite-dimensional algebras, Phys. Lett. B 237(3)-(4), 1990.
- T.L. Curtright and C.K. Zachos: Deforming maps for quantum algebras, Phys. Lett. B 243(3), 1990.
- C. Daskaloyannis: Generalized deformed Virasoro algebras, Modern Phys. Lett. A 7(9): 809-816, 1992.
- K.Q. Liu: Characterizations of the quantum Witt algebra, Lett. Math. Phys. 24 (4), 1992.

• Hom-associative algebras (Makhlouf and Silvestrov)

• Hom-associative algebras (Makhlouf and Silvestrov)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Universal enveloping algebras

(Laurent-Gengoux, Makhlouf, Teles, and Yau)

• Hom-associative algebras (Makhlouf and Silvestrov)

- Universal enveloping algebras (Laurent-Gengoux, Makhlouf, Teles, and Yau)
- Generalised Hochschild cohomology (Ammar, Ejbehi, Makhlouf, Silvestrov)

- Hom-associative algebras (Makhlouf and Silvestrov)
- Universal enveloping algebras (Laurent-Gengoux, Makhlouf, Teles, and Yau)
- Generalised Hochschild cohomology (Ammar, Ejbehi, Makhlouf, Silvestrov)
- Representations & C.E. cohomology of hom-Lie algebras (Sheng, Benayadi, Ammar, Ejbehi and Makhlouf)

- Hom-associative algebras (Makhlouf and Silvestrov)
- Universal enveloping algebras (Laurent-Gengoux, Makhlouf, Teles, and Yau)
- Generalised Hochschild cohomology (Ammar, Ejbehi, Makhlouf, Silvestrov)
- Representations & C.E. cohomology of hom-Lie algebras (Sheng, Benayadi, Ammar, Ejbehi and Makhlouf)

• Deformations (Makhlouf, Silvestrov, Ammar, Ejbehi)

- Hom-associative algebras (Makhlouf and Silvestrov)
- Universal enveloping algebras (Laurent-Gengoux, Makhlouf, Teles, and Yau)
- Generalised Hochschild cohomology (Ammar, Ejbehi, Makhlouf, Silvestrov)
- Representations & C.E. cohomology of hom-Lie algebras (Sheng, Benayadi, Ammar, Ejbehi and Makhlouf)

- Deformations (Makhlouf, Silvestrov, Ammar, Ejbehi)
- Integration of hom-Lie algebras (Laurent-Gengoux, Makhlouf, and Teles)

- Hom-associative algebras (Makhlouf and Silvestrov)
- Universal enveloping algebras (Laurent-Gengoux, Makhlouf, Teles, and Yau)
- Generalised Hochschild cohomology (Ammar, Ejbehi, Makhlouf, Silvestrov)
- Representations & C.E. cohomology of hom-Lie algebras (Sheng, Benayadi, Ammar, Ejbehi and Makhlouf)
- Deformations (Makhlouf, Silvestrov, Ammar, Ejbehi)
- Integration of hom-Lie algebras (Laurent-Gengoux, Makhlouf, and Teles)
- Hom-Gerstenhaber algebras and Hom-Lie algebroids (Laurent-Gengoux, and Teles).

Definition: [Laurent-Gengoux and Teles, 2013]

A hom-Gerstenhaber algebra is a quadruple $(\mathcal{A}, \wedge, [-, -], \alpha)$, where $\mathcal{A} = \bigoplus_{i \in \mathbb{Z}} \mathcal{A}_i$ is a graded commutative associative \mathbb{K} algebra, map α is an endomorphism of (\mathcal{A}, \wedge) of degree 0, and $[-, -] : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ is a bilinear map of degree -1 such that

• $(\mathcal{A}[1] = \bigoplus_{i \in \mathbb{Z}} \mathcal{A}_{(i+1)}, [-, -], \alpha)$ is a graded hom-Lie algebra.

• The hom-Leibniz rule holds:

 $[X, Y \land Z] = [X, Y] \land \alpha(Z) + (-1)^{(i-1)j} \alpha(Y) \land [X, Z]$

for all $X \in \mathcal{A}_i, Y \in \mathcal{A}_j, Z \in \mathcal{A}_k$.

Example-I

Let $(\mathcal{A}, [-, -], \wedge)$ is a Gerstenhaber algebra and a map

$$\alpha: (\mathcal{A}, [-, -], \wedge) \to (\mathcal{A}, [-, -], \wedge)$$

be an endomorphism of Gerstenhaber algebras, then the quadruple $(\mathcal{A}, \wedge, [-, -]_{\alpha}, \alpha)$ is a hom-Gerstenhaber algebra, where the graded hom-Lie bracket $[-, -]_{\alpha}$ is given as follows

 $[X, Y]_{\alpha} = [\alpha(X), \alpha(Y)]$ for all $X, Y \in \mathcal{A}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Example II

Let $(\mathfrak{g}, [-, -], \alpha)$ be a hom-Lie algebra, then one obtains a canonical hom-Gerstenhaber algebra $(\mathfrak{G} = \wedge^* \mathfrak{g}, \wedge, [-, -]_{\mathfrak{G}}, \alpha_{\mathfrak{G}})$, where

$$[x_1 \wedge \cdots \wedge x_n, y_1 \wedge \cdots \wedge y_m]_{\mathfrak{G}}$$

= $\sum_{i=1}^n \sum_{j=1}^m (-1)^{i+j} [x_i, y_j] \wedge \alpha_G (x_1 \wedge \cdots \hat{x}_i \cdots \wedge x_n \wedge y_1 \wedge \cdots \hat{y}_j \cdots \wedge y_m)$

for any $x_1, \dots, x_n, y_1, \dots, y_m \in \mathfrak{g}$, and the map $\alpha_G : \mathfrak{G} \to \mathfrak{G}$ is given as follows:

$$\alpha_{\mathfrak{G}}(x_1 \wedge \cdots \wedge x_n) = \alpha(x_1) \wedge \cdots \wedge \alpha(x_n).$$

Hom-bundle

Definition: [L. Cai, J. Liu, and Y. Sheng, 2017] A hom-bundle is a triplet (A, ψ, α) equipped with a vector bundle A over M, a smooth map $\psi : M \to M$, and a linear map $\alpha : \Gamma A \to \Gamma A$ such that the following condition is satisfied.

 $\alpha(f.x) = \psi^*(f).\alpha(x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for all $f \in C^{\infty}(M)$ and $x \in \Gamma A$. We say that $\alpha : \Gamma A \to \Gamma A$ is a ψ^* -function linear map.

Hom-Lie algebroids

Definition: [Laurent-Gengoux and Teles, 2013]

A hom-Lie algebroid over M is a hom-bundle (A, ψ, α) equipped with a bilinear map $[-, -] : \Gamma A \otimes \Gamma A \to \Gamma A$ and a vector bundle morphism $\rho : \psi^! A \to \psi^! TM$ such that following conditions hold.

- The triplet $(\Gamma A, [-, -], \alpha)$ is a hom-Lie algebra.
- The pair (ρ, ψ^*) is a representation of $(\Gamma A, [-, -], \alpha)$ on $C^{\infty}(M)$.
- For all $s, t \in \Gamma A, f \in C^{\infty}(M)$,

 $[s, f.t] = \psi^*(f).[s, t] + \rho(s)[f].\alpha(t).$

III. Relationship Between Hom-Gerstenhaber Algebras & Hom-Lie Algebraids

(ロ)、(型)、(E)、(E)、 E) の(()

A Bijective Correspondence

Theorem: [Laurent-Gengoux and Teles, 2013]

There is a bijective correspondence between hom-Lie algebroid structures on the hom-bundle (A, ψ, α) and hom-Gerstenhaber algebra structures on the pair $(\mathfrak{A}, \tilde{\alpha})$, where

$$\mathfrak{A} = \bigoplus_{k \geq 0} \ \Gamma(\wedge^k A)$$

A D N A 目 N A E N A E N A B N A C N

and the map $\tilde{\alpha}$ is an extension of α to higher degree elements.

Hom-Batalin Vilkovisky algebras

Definition: [A. Mandal and S.K. Mishra, 2018]

A hom-Gerstenhaber algebra $\mathcal{A} = (\bigoplus_{i \in \mathbb{Z}} \mathcal{A}_i, \wedge, [-, -], \alpha)$ is said to be generated by an operator $D : \mathcal{A} \to \mathcal{A}$ of degree -1if $D \circ \alpha = \alpha \circ D$, and

$$[X, Y] = (-1)^{|X|} (D(XY) - (DX)\alpha(Y) - (-1)^{|X|}\alpha(X)(DY))$$

for homogeneous elements $X, Y \in A$. Furthermore, if $D^2 = 0$, then D is called an exact generator and the hom-Gerstenhaber algebra A is called an exact hom-Gerstenhaber algebra or hom-Batalin-Vilkovisky algebra.

Example

Let $(\mathfrak{G} = \wedge^* \mathfrak{g}, \wedge, [-, -]_{\mathfrak{G}}, \alpha_{\mathfrak{G}})$ be the hom-Gerstenhaber algebra associated to a hom-Lie algebra $(\mathfrak{g}, [-, -], \alpha)$. Let us consider a boundary operator $d : \wedge^n \mathfrak{g} \to \wedge^{n-1} \mathfrak{g}$ of a hom-Lie algebra with coefficients in the trivial module \mathbb{K} :

$$d(x_1 \wedge \cdots \wedge x_n) = \sum_{1 \le i < j \le n} (-1)^{i+j} [x_i, x_j] \wedge \alpha_G(x_1 \wedge \cdots \hat{x_j} \wedge \cdots \wedge \hat{x_j} \wedge \cdots \wedge x_n)$$

for all $x_1, \dots, x_n \in \mathfrak{g}$ and n > 1. Then, $d : \mathfrak{G} \to \mathfrak{G}$ is a map of degree -1 such that $d^2 = 0$, and $d \circ \alpha = \alpha \circ d$. This operator d generates the bracket $[-, -]_{\mathfrak{G}}$, i.e.

$$[X,Y]_{\mathfrak{G}} = (-1)^{|X|} (d(XY) - (dX)\alpha_{\mathfrak{G}}(Y) - (-1)^{|X|}\alpha_{\mathfrak{G}}(X)(dY))$$

Strong Differential hom-Gerstenhaber algebras

Definition: [Mandal, A, and Mishra, SK, 2018] A hom-Gerstenhaber algebra $\mathfrak{A} := (\bigoplus_{i \in \mathbb{Z}} \mathcal{A}_i, \wedge, [-, -], \alpha)$ is called a differential hom-Gerstenhaber algebra if it is equipped with a degree 1 map $d : \mathfrak{A} \to \mathfrak{A}$ such that

• d is an (α, α) -derivation of degree 1 with respect to \wedge , i.e. $d(X \wedge Y) = d(X) \wedge \alpha(Y) + (-1)^{|X|} \alpha(X) \wedge d(Y)$ for any $X, Y \in \mathfrak{A}$.

A D N A 目 N A E N A E N A B N A C N

Strong Differential hom-Gerstenhaber algebras

Definition: [Mandal, A, and Mishra, SK, 2018] A hom-Gerstenhaber algebra $\mathfrak{A} := (\bigoplus_{i \in \mathbb{Z}} \mathcal{A}_i, \wedge, [-, -], \alpha)$ is called a differential hom-Gerstenhaber algebra if it is equipped with a degree 1 map $d : \mathfrak{A} \to \mathfrak{A}$ such that

• d is an (α, α) -derivation of degree 1 with respect to \wedge , i.e. $d(X \wedge Y) = d(X) \wedge \alpha(Y) + (-1)^{|X|} \alpha(X) \wedge d(Y)$ for any $X, Y \in \mathfrak{A}$.

• $d^2 = 0$, and the map d commutes with α .

Strong Differential hom-Gerstenhaber algebras

Definition: [Mandal, A, and Mishra, SK, 2018] A hom-Gerstenhaber algebra $\mathfrak{A} := (\bigoplus_{i \in \mathbb{Z}} \mathcal{A}_i, \wedge, [-, -], \alpha)$ is called a differential hom-Gerstenhaber algebra if it is equipped with a degree 1 map $d : \mathfrak{A} \to \mathfrak{A}$ such that

- d is an (α, α) -derivation of degree 1 with respect to \wedge , i.e. $d(X \wedge Y) = d(X) \wedge \alpha(Y) + (-1)^{|X|} \alpha(X) \wedge d(Y)$ for any $X, Y \in \mathfrak{A}$.
- $d^2 = 0$, and the map d commutes with α .

Hom-Gerstenhaber algebra \mathfrak{A} is said to be a strong differential hom-Gerstenhaber algebra if *d* also satisfies the equation:

$$d[X, Y] = [dX, \alpha(Y)] + [\alpha(X), dY]$$
 for any $X, Y \in \mathfrak{A}$.

Geometric structures on rank n hom-bundle (A, ψ, α)	Hom-algebraic structures on the pair $(\mathfrak{A}, \tilde{lpha})$
Hom-Lie algebroids	Hom-Gerstenhaber algebras
* Hom-Lie algebroids with a representation on the associated hom-bundle $(\wedge^n A, \psi, \tilde{\alpha})$	* Exact hom-Gerstenhaber algebras (Hom-BV algebras)
**Hom-Lie bialgebroids	**Strong differential hom-Gerstenhaber algebras

Note: * and ** requires invertibility of the hom-bundle.

Theorem: [A. Mandal and S.K. Mishra, 2018] If (A, ψ, α) be an invertible rank *n* hom-bundle, then we have the following bijective correspondences:

 Hom-BV algebra structures on (𝔅, α̃) ↔ hom-Lie algebroid structures on the hom-bundle (A, ψ, α) with a representation of this hom-Lie algebroid on the hom-bundle (∧ⁿA, ψ, α̃).

Theorem: [A. Mandal and S.K. Mishra, 2018] If (A, ψ, α) be an invertible rank *n* hom-bundle, then we have the following bijective correspondences:

- Hom-BV algebra structures on (𝔅, α̃) ↔ hom-Lie algebroid structures on the hom-bundle (A, ψ, α) with a representation of this hom-Lie algebroid on the hom-bundle (∧ⁿA, ψ, α̃).
- Strong differential hom-Gerstenhaber algebra structures on $(\mathfrak{A}, \tilde{\alpha})$ \leftrightarrow hom-Lie bialgebroid structures on the hom-bundle (A, ψ, α) .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- L. Cai, J. Liu, and Y. Sheng: Hom-Lie algebroids, hom-Lie bialgebroids and hom-Courant algebroids, *Journal of Geometry and Physics*, Vol. **121**: 15–32, 2017.
- M. Gerstenhaber: On the Deformation of Rings and Algebras, Annals of Mathematics II Series, Vol. 79(1): 59–103,1964.
- J. Hartwig, D. Larsson, and S. Silvestrov: Deformations of Lie algebras using σ-derivations, J. Algebra, Vol. 295: 314–361, 2006.

• C. Laurent-Gengoux and J. Teles: Hom-Lie algebroids, Journal of Geometry and Physics, Vol. **68**: 69–75, 2013.

- K. Mackenzie: General theory of Lie groupoids and Lie algebroids, *London Math Soc. Lecture Note Series*, **213**, 2005.
- A. Mandal and S.K. Mishra: On Hom-Gerstenhaber algebras and Hom-Lie algebroids, *Journal of Geometry and Physics*, Vol. 133: 287–302, 2018.
- Y. K. Schwarzbach: Exact Gerstenhaber algebras and Lie bialgebroid, *Acta Applicandae Mathematicae*, Vol. **41**: 153–165, 1995.
- P. Xu: Gerstenhaber Algebras and BV-Algebras in Poisson Geometry, Commun. Math. Phys., Vol. 200: 545–560, 1999.

Thank You!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ